Pointwise Convergence of Fejer Type Means

نویسندگان

  • Luca Brandolini
  • Giancarlo Travaglini
چکیده

Let P be a compact n-dimensional convex polyhedron in R n containing the origin in its interior and let e H(t) = Z 1 0 Z vP e 2it ddv, t2 R n ;where vP is the characteristic function of the dilated polyhedron vP. Let H N (t) = X m2Z n e H 1 N+1 (t+m), t 2 T n , where e H " (t) = " ?n e H(t="). We prove that (e H " f)(t) ! f(t) a.e., as " ! 0, for any f 2 L 1 (R n), and that (H N f)(t) ! f(t) a.e., as N ! 1, for any f 2 L 1 (T n).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability and convergence theorems of pointwise asymptotically nonexpansive random operator in Banach space

In this paper, we prove the existence of a random fixed point of by using pointwise asymptotically nonexpansive random operator and the stability resultsof two iterative schemes for random operator.

متن کامل

POINTWISE CONVERGENCE TOPOLOGY AND FUNCTION SPACES IN FUZZY ANALYSIS

We study the space of all continuous fuzzy-valued functions  from a space $X$ into the space of fuzzy numbers $(mathbb{E}sp{1},dsb{infty})$  endowed with the pointwise convergence topology.   Our results generalize the classical ones for  continuous real-valued functions.   The field of applications of this approach seems to be large, since the classical case  allows many known devices to be fi...

متن کامل

A generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions

Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.

متن کامل

Convergence of Polynomial Level Sets

In this paper we give a characterization of pointwise and uniform convergence of sequences of homogeneous polynomials on a Banach space by means of the convergence of their level sets. Results are obtained both in the real and the complex cases, as well as some generalizations to the nonhomogeneous case and to holomorphic functions in the complex case. Kuratowski convergence of closed sets is u...

متن کامل

Pointwise approximation by Bernstein type operators in mobile interval

Keywords: Bernstein operators Pointwise approximation Rate of convergence a b s t r a c t In the present paper, we study pointwise approximation by Bernstein–Durrmeyer type operators in the mobile interval x 2 0; 1 À 1 nþ1 h i , with use of Peetre's K-functional and x 2 u k ðf ; tÞ ð0 6 k 6 1Þ, we give its properties and obtain the direct and inverse theorems for these operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007